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a b s t r a c t

Foot and mouth disease (FMD) is a highly infectious and economically devastating disease of livestock.
Although vaccines, available since the early 1900s, have been instrumental in eradicating FMD from
parts of the world, the disease still affects millions of animals around the globe and remains the main
sanitary barrier to the commerce of animals and animal products. Currently available inactivated antigen
vaccines applied intramuscularly to individual animals, confer serotype and subtype specific protection
in 1–2 weeks but fail to induce long-term protective immunity. Among the limitations of this vaccine are
potential virus escape from the production facility, short shelf life of formulated product, short duration
of immunity and requirement of dozens of antigens to address viral antigenic diversity. Here we review
novel vaccine approaches that address some of these limitations. Basic research and the combination
of reliable animal inoculation models, reverse genetics and computational biology tools will allow the
rational design of safe and effective FMD vaccines. These vaccines should address not only the needs
of FMD-free countries but also allow the progressive global control and eradication of this devastating
disease.

Published by Elsevier Ltd.
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1. Introduction

The last decade has seen a renewed public and political inter-
est on foot and mouth disease (FMD) due to its potential as a
bio-terrorist threat and some high-profile disease incursions in

previously FMD-free countries in Asia, Europe and South America
[1,2]. Control methods varied among these regions but the ultimate
result was the demise of millions of animals, the loss of billions of
US$ in various economic activities including tourism, agriculture
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and trade and serious social impacts [3]. The public and politicians
alike ask why if effective vaccines are available they are not always
used for outbreak control? Why countries using vaccines to control
FMD are penalized with animal trade restrictions? The answers to
these questions are explained at least in part by critical shortfalls
of current inactivated antigen vaccines and lack of clear under-
standing of disease transmission and pathogenesis. This review will
update previous reviews on FMD vaccines [4] highlighting the limi-
tations of current vaccines and providing some perspectives toward
upcoming molecular vaccines.
2. FMDV overview

FMD is perhaps the most important animal disease limiting
trade of animals and animal products [5–7]. FMDV is highly trans-

http://www.sciencedirect.com/science/journal/0264410X
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issible and causes high morbidity outbreaks with moderate to
ow mortality in most cases. Hallmarks of FMD virus (FMDV) infec-
ion include the appearance of vesicular lesions in epithelia of the

outh and coronary bands of the hoof, the highly contagious nature
nd the multiple virus antigenic types and subtypes [8].

After aerosol exposure of cattle FMDV first replicates in the phar-
nx. In 24–48 h the virus invades the blood stream and shortly
hereafter lesions appear in the mouth and feet of susceptible
nimals [9]. Viremia usually disappears after 3–4 days but virus
eplicates to very high titers (>8 log 10 infectious units per ml) at
esions sites and is shed in the air and body fluids. Between 5 and 10
ays after their appearance, lesions resolve and virus is no longer
ound at the lesion sites and can only be recovered from pharyngeal
uid and tissues [9]. The virus establishes persistence in the pha-
yngeal region of approximately half of the infected animals, even
accinated animals protected from clinical disease, that become
ong-term carriers [10,11]. Although the role of persistence in virus
ransmission remains unclear the fact that vaccines fail to prevent
he carrier state is arguably one of the reasons vaccination is not
he first choice for outbreak control in non-enzootic countries, since
nfected countries need to demonstrate freedom of viral infection
efore they regain FMDV-free status.

The current global status of FMD distribution shows geographic
reas where viral activity persists over long periods of time in
he local population [1]. Most of these “hot spots” of viral activ-
ty are located in poor countries that lack the adequate veterinary
ervices and resources necessary to undertake control and erad-
cation efforts. Trade restrictions of animals and animal products
ave failed to prevent incursions of FMDV from enzootic hot spots

nto FMD free areas and hemispheric eradication efforts have met
imited success [12,13]. Inactivated FMD vaccines have proven to
e an important component of control and eradication strategies
oth in enzootic and non-enzootic settings. However, hot spots of
iral activity remain resistant to control efforts and viral incursions
nto non-enzootic regions are often controlled by mass slaughter
f susceptible animals without the use of vaccines [13]. Here we
eview the advantages and shortcomings of current inactivated
accines and novel molecular vaccines that may provide answers to
ome of the problems faced by the efforts to control and eradicate
MD.

. FMD inactivated antigen vaccines

.1. Brief history

FMDV was the first animal virus described as an etiological agent
y Loeffler and Frosch in 1897 and FMD vaccines were among the
rst animal vaccines to be developed, with efforts to immunize
nimals by exposure to infectious virus beginning at the end of
he 19th century [14]. But a practical vaccine was never realized
ue to the unpredictability of viral virulence and the existence
f multiple viral serotypes (Vallée, 1922). The first inactivated
accine was developed by Waldmann et al. around 1937 using
esicular fluid obtained from tongues of deliberately infected cattle,
nd subsequently inactivated with formaldehyde [15]. But indus-
rial production of inactivated vaccines did not begin until the
950s after Frenkel described the culture of tongue epithelium
rom healthy slaughtered animals [14]. Further breakthroughs in
nactivated FMD vaccine production included the growth of FMDV

n BHK cell suspension cultures in the 1960s [16], the introduc-
ion of ethylene imines for FMDV antigen inactivation [17,18], and
he use of oil-adjuvants in the 1970s [19]. For extensive reviews
n the history of FMD vaccines see Lombard et al. [14] and Doel
20].
ccine 27 (2009) D90–D94 D91

3.2. Modern vaccine production and antigen purification

As inactivated vaccines evolved, several problems manifested
themselves, such as the incomplete viral inactivation of formalde-
hyde treated antigens. This problem was solved by the introduction
of BEI inactivated antigens. In early vaccine production systems
concentration of the antigen was achieved through the use of
aluminum hydroxide gel adsorption, or polyethylene glycol pre-
cipitation. Although these methods are effective and still in use
in some parts of the world, they have been largely replaced by
industrial ultra-filtration and chromatography in order to remove
unwanted cellular protein contaminants and viral non-structural
proteins. The need to further purify vaccine antigens arose not
only to prevent unwanted allergic reactions to cell proteins in ani-
mals after multiple vaccinations but also to allow differentiation of
infected from vaccinated animals during control campaigns [20].

At the beginning of the 21st century the protocol for produc-
tion of inactivated FMD vaccines allows the use of serological tests
that can differentiate infected from vaccinated animals, formula-
tion of vaccines that include multiple serotypes and subtypes and
a number of adjuvants [20]. However, the basic technology for vac-
cine production has remained the same, still requiring the growth
of large volumes of virulent FMDV, subsequent virus inactivation
and antigen concentration and purification. This raises concerns
with biosafety issues and causes countries like the United States
to prohibit vaccine production on its mainland. Additionally, FMD
vaccines like other killed antigens do not induce broadly reactive
long-term protection, require multiple vaccinations to maintain
good levels of herd immunity and require periodic inclusion of
new viral strains into the vaccine formulation to cover new viral
subtypes against which existing vaccines no longer protect. Other
important shortcomings of current inactivated vaccines include
short shelf life, the need for adequate cold chain of formulated vac-
cines, and difficulties of certain serotypes and subtypes to grow
well in cell culture for vaccine production. In order to address these
problems basic research and new technologies are necessary.

4. Novel molecular vaccines

4.1. Recombinant protein and peptide vaccines

By the mid-1970s researchers had developed information con-
cerning the virus capsid structure and determined that one of the
capsid proteins, VP1, had a prominent surface exposure [21,22].
Based on this information a number of strategies were utilized to
develop protein vaccines as alternatives to the inactivated vaccine.
VP1 was isolated from purified virus and induced a neutralizing
antibody response in swine [23] and protected both swine and
cattle against FMDV challenge [24]. Utilizing recombinant DNA
technology it was shown that VP1 produced in E. coli protected
both swine and cattle from virus challenge [25]. Additional studies
revealed that portions of VP1 could induce a neutralizing antibody
response and nucleic acid sequencing of different strains of the
virus showed variation in these protein regions. These regions rep-
resented the variable G–H loop found on the surface of the FMDV
capsid [26] and the carboxy-terminal region of VP1 and corre-
sponded to B cell epitopes. Bittle et al. [27] synthesized peptides
corresponding to these regions and demonstrated that the pep-
tides could induce high levels of neutralizing antibody in cattle and
protected guinea pigs from challenge. Subsequently DiMarchi et al.

[28] immunized cattle with peptides representing these regions of
VP1 and demonstrated protection of 2 of 3 animals. Additional stud-
ies combining these peptides with peptides that represented FMDV
T-cell epitopes showed that the T-cell peptides were recognized by
a significant number of cattle and pigs. Various groups have used
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ther systems to produce B and T-cell peptides including trans-
enic plants, or plants infected with recombinant viruses as well as
ther methods of antigen delivery such as viral vectors and naked
NA [29–33]. In a large-scale evaluation of peptide vaccines in cat-

le Taboga et al. [34] found that peptides administered in several
oses and vaccination schedules afforded, at best, 40% protection
nd that virus escape mutants contained amino acid substitutions
t the major antigenic sites represented in the peptide vaccines.
imilar results were obtained by Rodriguez et al. [35].

The results of these studies suggest that peptide vaccines rep-
esenting only a limited number of antigenic sites and/or T-cell
pitopes of the virus are not able to induce significant protection.
urthermore, the above sites represent only continuous regions
f the virus capsid. However, some of the antigenic sites on the
irus are discontinuous and involve different regions of a capsid
rotein or more than one protein. In addition, the quasispecies
ature of FMDV [36] invites the selection of antigenic variants
hat could cause outbreaks in animals vaccinated with peptide
accines.

.2. Empty capsid vaccines

An alternate approach to protein or peptide vaccines is the
evelopment of immunogens that contain the entire repertoire
f immunogenic sites present on the intact virus particle thereby
ecreasing the possible selection of antigenic variants from the
uasispecies. Empty viral capsids are virus particles lacking nucleic
cid which are naturally produced in infected cells and are as
mmunogenic as virions [37,38]. A number of groups constructed
lasmids containing the capsid and the 3C protease (3Cpro) coding
egions [39–41]. The latter gene product is required for processing
he capsid precursor protein into the structural proteins VP0, VP3
nd VP1 [42]. Utilizing various expression systems empty capsids
ere synthesized and assembled in cell culture.

Subsequently a number of approaches have been used to deliver
he products either as proteins expressed in E. coli [43] or recom-
inant baculoviruses [44] or by direct intramuscular inoculation of
ecombinant vectors including naked DNA [45], poxviruses [46,47],
nd human adenovirus [48–50]. Thus far the most successful strat-
gy has been the delivery of the FMDV capsid sequence with
recombinant, replication-defective human adenovirus type 5

Ad5). This vector has the capacity to incorporate 5–8 kbp of foreign
NA, can only grow in complementary cells expressing the deleted
d5 genes adding to the level of safety, but can infect multiple ani-
al species including cattle and swine. An additional advantage

f direct inoculation of a live vector is that the FMDV capsids are
xpressed and assembled in the animal potentially inducing both
umoral as well as cell-mediated immunity.

In initial efficacy studies an Ad5 vector containing the capsid
nd 3Cpro coding regions of the A12 laboratory strain of FMDV
rotected swine from clinical disease after contact challenge [50].
hese studies further demonstrated that an active 3Cpro was essen-
ial for protection. Subsequently an Ad5 vector containing the
apsid coding region from a field strain of FMDV, A24 Cruzeiro
Ad5-FMD-A24), was constructed and swine given one dose of the
ector were protected from direct inoculation challenge as early
s 7 days postvaccination and for up to 42 days [51]. In a similar
tudy cattle given one dose of Ad5-A24 were protected from direct
noculation challenge by 7 days postvaccination [52]. More recently
d5-FMD vectors containing the capsid from other FMDV serotypes
nd subtypes have been constructed and successfully tested in cat-

le (Moraes et al., unpublished data; Grubman et al., manuscript
n preparation). These vectors are currently undergoing advanced
evelopment as vaccines.

Recently a number of groups have used a variety of sys-
ems to express the FMDV capsid in the presence or absence of
ccine 27 (2009) D90–D94

the 3Cpro coding regions and in some cases supplemented with
various cytokines as potential adjuvants. Recombinant fowlpox
or pseudorabies virus vectors or naked DNA administered to
swine induced FMDV-specific neutralizing antibody responses
and varying degrees of protection [53–56]. Li et al. [54] used a
baculovirus-silkworm expression system and demonstrated that 4
of 5 cattle inoculated with the hemolymph from infected silkworms
were protected from challenge. Some of these expression systems
appear promising, but they are still at earlier stages of testing and
development compared to the Ad5-FMD vaccine candidates.

4.3. Live attenuated vaccines

Attempts to develop live attenuated FMD vaccines have met lim-
ited success with vaccine viruses showing unstable phenotype or
differences in pathogenesis for individual species (e.g. attenuated
in cattle but not in swine) or viruses too attenuated to consistently
induce protective immune responses [57–60]. These vaccines relied
on the use of viruses selected in cell culture or in laboratory animals
showing attenuated phenotypes [57]. However, the mechanisms
of attenuation were largely unknown, attenuation was incomplete
and protective immune responses were not as consistent as with
inactivated vaccines. Due to these problems and concerns over
reversion to virulence through mutation or recombination with
field viruses, live FMD vaccines have not been pursued for many
years.

The advent of infectious cDNA technologies and knowledge
about FMDV functional genomics allowed the introduction of spe-
cific changes in the FMDV genome and evaluation of the attenuating
effects of such changes not only in cell culture but also in animals
[61,62]. An important milestone in understanding FMD pathogene-
sis was the discovery that leader protein (Lpro) is a viral determinant
for virulence. This viral non-structural protein, present in all FMDV
serotypes, has been identified as a protease that not only cleaves
itself from the nascent viral polyprotein [63], but also cleaves cel-
lular proteins and modulates host innate responses [64–66]. A
genetically engineered FMDV serotype A12 lacking the Lpro-coding
region (A12-LLV2) was attenuated [67] and was not transmissi-
ble between cattle or swine, yet it induced an immune response
that was partially protective [68,69]. An inactivated antigen vac-
cine produced using A12-LLV2 induced full protection similar to
that induced by the inactivated wild-type A12 [69]. These series
of experiments represented the first time that knowledge about a
well defined FMDV genetic virulence determinant was utilized to
rationally design an attenuated FMD vaccine.

Little is known about other virulence determinants in the
FMDV genome. As new virulence determinants are identified new
possibilities for attenuated vaccines will arise. Translating this
knowledge into vaccine candidates will require detailed knowl-
edge of the virus host interaction and mechanisms of pathogenesis
in order to address concerns about complete attenuation in all
susceptible species and decreasing the possibility of reversion to
virulence.

5. The role for basic research in the rational design of FMD
vaccines

Although the currently available inactivated vaccines have a
number of positive characteristics, most importantly they induce
protection against challenge and thus can prevent and control FMD,
there are major shortcomings of this vaccine and its production

that remain unaddressed (Table 1). Ad5-FMD vaccines, the first
molecular vaccines undergoing advanced development, have suc-
cessfully addressed some of these short comings but important
gaps remain. Some of these limitations are being addressed in the
Ad5-FMD platform with number of approaches including the use of
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Table 1
Comparison of product profiles for inactivated and Ad5 FMD vaccines.

Vaccine feature Inactivated
antigen

Ad5
vectored

Effective after one dose Yes Yes
Prevents viral shedding Yes Yes
Onset of immunity in 7 days Yes Yes
Safe production without the use of virulent virus No Yes
Stable for long time after formulation No Yes
Negative marker—DIVA compatible Some Yes
Thermostable No No
Cross-serotype protection No No
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Induces life long protection No No
Prevents carrier state No No
Confers rapid protection (<7 days) No No

raditional adjuvants (e.g. synthetic emulsions) or cytokine-based
djuvants such as type I interferon [70], alternate routes of delivery,
issue targeting, Ad5-FMD vaccines with enhanced capsid stability,
nd inclusion in the vector of FMDV non-structural protein coding
egions that may enhance empty capsid assembly [71].

Additional longstanding shortcomings of FMD vaccines require
ew approaches based on detailed knowledge of the viral life cycle
nd the host response to infection and vaccination. Current inac-
ivated FMD vaccine strains have had minimal or no molecular
hanges other than adaptation for growth in the production cells.
his adaptation has proven difficult in some cases with viruses
ot producing enough yield for vaccine production or the virus
hanging important antigenic determinants during cell adaptation
72,73]. Infectious cDNA technology could be utilized to improve
r change specific regions of the capsid to improve growth, sta-
ility and antigenicity. For example Mateo et al. [74] showed that

ntroducing amino acid changes in predicted stabilizing sites in
he FMDV capsid resulted in viruses that were more thermostable.
nother approach to changing the capsid was taken by Mason and
o-workers [75] who engineered an FMDV containing a deletion
f the main receptor binding motif in VP1 (RGD). This virus only
rows in cells engineered to contain a synthetic viral receptor,
ut induced a protective immune response in cattle. Despite the
romising results these approaches have not found their way into
accine production systems.

In conclusion vaccines are a fundamental component of strate-
ies aimed at global control and eradication of FMD. It is unlikely
hat a single vaccine approach will solve the many shortcomings
f current vaccines. More likely each situation will require fit-
or-purpose vaccine approaches including the currently available
nactivated antigens. Also different stages during control and erad-
cation will require the combination of different vaccine strategies.
or example enzootic regions will require highly effective vac-
ines that can induce broadly protective and long-term responses
n order to decrease virus transmission and incidence of clinical
isease. Eradication might require vaccines that will allow dif-
erentiating infected from vaccinated animals (DIVA). Emergency
esponse to outbreaks will require fast acting DIVA compatible
accines with long-term stability of the formulated ready to use
roduct. These fit-for-purpose, rationally designed vaccine strate-
ies and their companion diagnostic tests will need to be developed
ased on deep understanding of the functional genomics of FMDV
nd the mechanisms of viral virulence. Investment in basic research
s necessary to obtain the required knowledge and translational
esearch necessary to convert this knowledge into useful prod-
cts.
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